
The Optimal Logic Depth Per Pipeline Stage is 6 to 8 FO4 Inverter Delays

M.S. Hrishikesh� Norman P. Jouppi+ Keith I. Farkas+

Doug Burgery Stephen W. Kecklery Premkishore Shivakumary

�Department of Electrical and Computer Engineering +Western Research Lab
yDepartment of Computer Sciences Compaq Computer Corporation
The University of Texas at Austin http://research.compaq.com/wrl/

http://www.cs.utexas.edu/users/cart

Abstract

Microprocessor clock frequency has improved by nearly 40%
annually over the past decade. This improvement has been
provided, in equal measure, by smaller technologies and
deeper pipelines. From our study of the SPEC 2000 bench-
marks, we find that for a high-performance architecture imple-
mented in 100nm technology, the optimal clock period is ap-
proximately 8 fan-out-of-four (FO4) inverter delays for integer
benchmarks, comprised of 6 FO4 of useful work and an over-
head of about 2 FO4. The optimal clock period for floating-
point benchmarks is 6FO4. We find these optimal points to be
insensitive to latch and clock skew overheads. Our study indi-
cates that further pipelining can at best improve performance
of integer programs by a factor of 2 over current designs. At
these high clock frequencies it will be difficult to design the
instruction issue window to operate in a single cycle. Con-
sequently, we propose and evaluate a high-frequency design
called a segmented instruction window.

1 Introduction

Improvements in microprocessor performance have been sus-
tained by increases in both instruction per cycle (IPC) and
clock frequency. In recent years, increases in clock fre-
quency have provided the bulk of the performance improve-
ment. These increases have come from both technology scal-
ing (faster gates) and deeper pipelining of designs (fewer gates
per cycle). In this paper, we examine for how much further
reducing the amount of logic per pipeline stage can improve
performance. The results of this study have significant impli-
cations for performance scaling in the coming decade.

Figure 1 shows the clock periods of the Intel family of
x86 processors on the y-axis. The x-axis shows the year of
introduction and the feature size used to fabricate each pro-
cessor. We computed the clock period by dividing the nom-
inal frequency of the processor by the delay of one FO4 at
the corresponding technology1. The graph shows that clock
frequency has increased by approximately a factor of 60 over
the past twelve years. During this period process technology

1 We measure the amount of logic per pipeline stage in terms of
fan-out-of-four (FO4) – the delay of one inverter driving four copies of
itself. Delays measured in FO4 are technology independent. The data
points in Figure 1 were computed assuming that 1 FO4 roughly corre-
sponds to 360 picoseconds times the transistor’s drawn gate length in
microns [6].

1990 1992 1994 1996 1998 2000 2002
0

20

40

60

80

C
lo

ck
 p

er
io

d
(F

o4
)

Year
Tech (nm) 1000 800 600 350 250 180 130

33 MHz

66 MHz

100 MHz

200 MHz

450 MHz

1 GHz
2 GHz

7.8 FO4

Figure 1: The year of introduction, clock frequency and fabrication
technologies of the last seven generations of Intel processors. Logic
levels are measured in fan-out-of-four delays (FO4). The broken line
shows the optimal clock period for integer codes.

has been scaled from 1000nm to 130nm, contributing an 8-
fold improvement in clock frequency. The amount of logic per
pipeline stage decreased from 84 to 12 FO4, contributing to
the increase in clock frequency by a factor of 7. So far, both
technology scaling and reduction in logic per stage have con-
tributed roughly equally to improvements in clock frequency.

However, decreasing the amount of logic per pipeline stage
increases pipeline depth, which in turn reduces IPC due to in-
creased branch misprediction penalties and functional unit la-
tencies. In addition, reducing the amount of logic per pipeline
stage reduces the amount of useful work per cycle while not
affecting overheads associated with latches, clock skew and
jitter. Therefore, shorter pipeline stages cause the overhead to
become a greater fraction of the clock period, which reduces
the effective frequency gains.

Processor designs must balance clock frequency and IPC
to achieve ideal performance. Previously, Kunkel and Smith
examined this trade-off [9] by investigating the pipelining of
a CRAY 1-S supercomputer to determine the number of lev-
els of logic per pipeline stage that provides maximum per-
formance. They assumed the use of Earle latches between
stages of the pipeline, which were representative of high-
performance latches of that time. They concluded that, in the
absence of latch and skew overheads, absolute performance
increases as the pipeline is made deeper. But when the over-
head is taken into account, performance increases up to a point
beyond which increases in pipeline depth reduce performance.
They found that maximum performance was obtained with 8

Proceedings of the 29th Annual International Symposium on Computer Architecture (ISCA�02)
1063-6897/02 $17.00 © 2002 IEEE

Clk

Vdd

QbQ

Clkb

Gnd

Tsu h

dqT

Q

D

CLK

T

(a) (b)

Figure 2: Circuit and timing diagrams of a basic pulse latch. The shaded area in Figure 2b indicates that the signal is valid.

gate levels per stage for scalar code and with 4 gate levels per
stage for vector code, which, using the equivalence we develop
in Appendix A, is approximately 10.9 and 5.4 FO4 respec-
tively.

In the first part of this paper, we re-examine Kunkel and
Smith’s work in a modern context to determine the optimal
clock frequency for current-generation processors. Our study
investigates a superscalar pipeline designed using CMOS tran-
sistors and VLSI technology, and assumes low-overhead pulse
latches between pipeline stages. We show that maximum per-
formance for integer benchmarks is achieved when the logic
depth per pipeline stage corresponds to 7.8 FO4—6 FO4 of
useful work and 1.8 FO4 of overhead. The dashed line in Fig-
ure 1 represents this optimal clock period. Note that the clock
periods of current-generation processors already approach the
optimal clock period. In the second portion of this paper, we
identify a microarchitectural structure that will limit the scal-
ability of the clock and propose methods to pipeline it at high
frequencies. We propose a new design for the instruction issue
window that divides it into sections. We show that although
this method reduces the IPC of integer benchmarks by 11%
and that of floating-point benchmarks by 5%, it allows signifi-
cantly higher clock frequencies.

The remainder of this paper is organized in the following
fashion. To determine the ideal clock frequency we first quan-
tify latch overhead and present a detailed description of this
methodology in Section 2. Section 3 describes the method-
ology to find the ideal clock frequency, which entails experi-
ments with varied pipeline depths. We present the results of
this study in Section 4. We examine specific microarchitec-
tural structures in Section 5 and propose new designs that can
be clocked at high frequencies. Section 6 discusses related
work, and Section 7 summarizes our results and presents the
conclusions of this study.

2 Estimating Overhead

The clock period of the processor is determined by the follow-
ing equation

� = �logic + �latch + �skew + �jitter (1)

where � is the clock period, �logic is useful work performed
by logic circuits, �latch is latch overhead, �skew is clock skew
overhead and �jitter is clock jitter overhead. In this sec-
tion, we describe our methodology for estimating the overhead
components, and the resulting values.

A pipelined machine requires data and control signals at
each stage to be saved at the end of every cycle. In the sub-
sequent clock cycle this stored information is used by the fol-
lowing stage. Therefore, a portion of each clock period, called
latch overhead, is required by latches to sample and hold val-
ues. Latches may be either edge triggered or level sensitive.
Edge-triggered latches reduce the possibility of race through,
enabling simple pipeline designs, but typically incur higher
latch overheads. Conversely, level-sensitive latches allow for
design optimizations such as “slack-passing” and “time bor-
rowing” [2], techniques that allow a slow stage in the pipeline
to meet cycle time requirements by borrowing unused time
from a neighboring, faster stage. In this paper we model a
level-sensitive pulse latch, since it has low overhead and power
consumption [4]. We use SPICE circuit simulations to quan-
tify the latch overhead.

Figure 2a shows the circuit for a pulse latch consisting of
a transmission gate followed by an inverter and a feed-back
path. Data values are sampled and held by the latch as follows.
During the period that the clock pulse is high, the transmission
gate of the latch is on, and the output of the latch (Q) takes the
same value as the input (D). When the clock signal changes to
low, the transmission gate is turned off. However, the transis-
tors along one of the two feedback paths turn on, completing
the feedback loop. The inverter and the feedback loop retain
the sampled data value until the following clock cycle.

The operation of a latch is governed by three parameters—
setup time (Tsu), hold time (Th), and propagation delay
(Tdq), as shown in Figure 2b. To determine latch overhead,
we measured its parameters using the test circuit shown in Fig-
ure 3. The test circuit consists of a pulse latch with its output
driving another similar pulse latch whose transmission gate is
turned on. On-chip data and clock signals may travel through
a number of gates before they terminate at a latch. To simu-
late the same effect, we buffer the clock and data inputs to the
latch by a series of six inverters. The clock signal has a 50%
duty cycle while the data signal is a simple step function. We

Proceedings of the 29th Annual International Symposium on Computer Architecture (ISCA�02)
1063-6897/02 $17.00 © 2002 IEEE

D

Clk

Qb

Load

Gnd

Figure 3: Simulation setup to find latch overhead. The clock and
data signals are buffered by a series of six inverters and the output
drives a similar latch with its transmission gate turned on.

simulated transistors at 100nm technology and performed ex-
periments similar to those by Stojanović et al. [14], using the
same P-transistor to N-transistor ratios. In our experiments, we
moved the data signal progressively closer to the falling edge
of the clock signal. Eventually when D changes very close to
the falling edge of the Clk signal the latch fails to hold the cor-
rect value of D. Latch overhead is the smallest of the D-Q de-
lays before this point of failure [14]. We estimated latch over-
head to be 36ps (1 FO4) at 100nm technology. Since this delay
is determined by the switching speed of transistors, which is
expected to scale linearly with technology, its value in FO4
will remain constant at all technologies. Note that throughout
this paper transistor feature sizes refer to the drawn gate length
as opposed to the effective gate length.

In addition to latch overhead, clock skew and jitter also
add to the total overhead of a clock period. A recent study
by Kurd et al. [10] showed that, by partitioning the chip into
multiple clock domains, clock skew can be reduced to less
than 20ps and jitter to 35ps. They performed their studies at
180nm, which translates into 0.3 FO4 due to skew and 0.5
FO4 due to jitter. Many components of clock skew and jit-
ter are dependent on the speed of the components, and those
that are dependent on the transistor components should scale
with technology. However, other terms, such as delay due to
process variation, may scale differently, hence affecting the
overall scalability. For simplicity we assume that clock skew
and jitter will scale linearly with technology and therefore their
values in FO4 will remain constant. Table 1 shows the values
of the different overheads that we use to determine the clock
frequency in Section 4. The sum of latch, clock skew and jitter
overhead is equal to 1.8 FO4. We refer to this sum in the rest
of the paper as �overhead.

3 Methodology

To study the effect of deeper pipelining on performance, we
varied the pipeline depth of a modern superscalar architecture
similar to the Alpha 21264. This section describes our simula-
tion framework and the methodology we used to perform this
study.

3.1 Simulation Framework

We used a simulator developed by Desikan et al. that mod-
els both the low-level features of the Alpha 21264 proces-
sor [3] and the execution core in detail. This simulator has
been validated to be within an accuracy of 20% of a Compaq

Symbol Definition Overhead

�latch Latch Overhead 1.0 FO4
�skew Skew Overhead 0.3 FO4
�jitter Jitter Overhead 0.5 FO4

�overhead Total 1.8 FO4

Table 1: Overheads due to latch, clock skew and jitter.

Integer Vector FP Non-vector FP

164.gzip 171.swim 177.mesa
175.vpr 172.mgrid 178.galgel
176.gcc 173.applu 179.art
181.mcf 183.equake 188.ammp

197.parser 189.lucas
252.eon

253.perlbmk
256.bzip2
300.twolf

Table 2: SPEC 2000 benchmarks used in all simulation exper-
iments. The benchmarks are further classified into vector and non-
vector benchmarks.

DS-10L workstation. For our experiments, the base latency
and capacities of on-chip structures matched those of the Al-
pha 21264, and the level-2 cache was configured to be 2MB.
The capacities of the integer and floating-point register files
alone were increased to 512 each, so that the performance of
deep pipelines was not unduly constrained due to unavailabil-
ity of registers. We modified the execution core of the simu-
lator to permit the addition of more stages to different parts of
the pipeline. The modifications allowed us to vary the pipeline
depth of different parts of the processor pipeline, including the
execution stage, the register read stage, the issue stage, and the
commit stage.

Table 2 lists the benchmarks that we simulated for our
experiments, which include integer and floating-point bench-
marks taken from the SPEC 2000 suite. Some of the floating-
point (FP) benchmarks operate on large matrices and exhibit
strong vector-like behavior; we classify these benchmarks as
vector floating-point benchmarks. When presenting simula-
tion results, we show individual results for integer, vector FP,
and non-vector FP benchmarks separately. All experiments
skip the first 500 million instructions of each benchmark and
simulate the next 500 million instructions.

3.2 Microarchitectural Structures

We use Cacti 3.0 [12] to model on-chip microarchitectural
structures and to estimate their access times. Cacti is an an-
alytical tool originally developed by Jouppi and Wilton [7].
All major microarchitectural structures—data cache, register
file, branch predictor, register rename table and instruction is-
sue window—were modeled at 100nm technology and their
capacities and configurations were chosen to match the corre-
sponding structures in the Alpha 21264. We use the latencies
of the structures obtained from Cacti to compute their access

Proceedings of the 29th Annual International Symposium on Computer Architecture (ISCA�02)
1063-6897/02 $17.00 © 2002 IEEE

Branch Rename Issue Register Integer FLoating Point
�logic (FO4) DL1 Predictor Table Window File Add Mult Add Div Sqrt Mult

2 16 10 9 9 6 9 61 35 105 157 35
3 11 7 6 6 4 6 41 24 70 105 24
4 9 5 5 5 3 5 31 18 53 79 18
5 7 4 4 4 3 4 25 14 42 63 14
6 6 4 3 3 2 3 21 12 35 53 12
7 6 3 3 3 2 3 18 10 30 45 10
8 5 3 3 3 2 3 16 9 27 40 9
9 5 3 2 2 2 2 14 8 24 35 8

10 4 2 2 2 2 2 13 7 21 32 7
11 4 2 2 2 1 2 12 7 19 29 7
12 4 2 2 2 1 2 11 6 18 27 6
13 4 2 2 2 1 2 10 6 17 25 6
14 4 2 2 2 1 2 9 5 15 23 5
15 3 2 2 2 1 2 9 5 14 21 5
16 3 2 2 2 1 2 8 5 14 20 5

Alpha 21264 (17.4) 3 1 1 1 1 1 7 4 12 18 4

Table 3: Access latencies (clock cycles) of microarchitectural structures and integer and floating-point operations at 100nm technology (drawn
gate length). The functional units are fully pipelined and new instructions can be assigned to them every cycle. The last row shows the latency of
on-chip structures on the Alpha 21264 processor (180nm).

penalties (in cycles) at different clock frequencies.

3.3 Scaling Pipelines

We find the clock frequency that will provide maximum per-
formance by simulating processor pipelines clocked at differ-
ent frequencies. The clock period of the processor is deter-
mined by the following equation: � = �logic + �overhead.
The overhead term is held constant at 1.8 FO4, as discussed
in Section 2. We vary the clock frequency (1/�) by varying
�logic from 2 FO4 to 16 FO4. The number of pipeline stages
(clock cycles) required to access an on-chip structure, at each
clock frequency, is determined by dividing the access time of
the structure by the corresponding �logic. For example, if the
access time of the level-1 cache at 100nm technology is 0.28ns
(8 FO4), for a pipeline where �logic equals 2 FO4 (0.07ns), the
cache can be accessed in 4 cycles.

Though we use a 100nm technology in this study, the ac-
cess latencies at other technologies in terms of the FO4 met-
ric will remain largely unchanged at each corresponding clock
frequency, since delays measured in this metric are technology
independent. Table 3 shows the access latencies of structures
at each �logic. These access latencies were determined by di-
viding the structure latencies (in pico seconds) obtained from
the cacti model by the corresponding clock period. Table 3
also shows the latencies for various integer and floating-point
operations at different clocks. To compute these latencies we
determined �logic for the Alpha 21264 processor (800MHz,
180nm) by attributing 10% of its clock period to latch over-
head (approximately 1.8 FO4). Using this �logic and the func-
tional unit execution times of the Alpha 21264 (in cycles) we
computed the execution latencies at various clock frequencies.
In all our simulations, we assumed that results produced by the
functional units can be fully bypassed to any stage between Is-
sue and Execute.

In general, the access latencies of the structures increase as
�logic is decreased. In certain cases the access latency remains
unchanged despite a change in �logic. For example, the access
latency of the register file is 0.39ns at 100nm technology. If
�logic was 10 FO4 the access latency of the register file would
be approximately 1.1 cycles. Conversely, if �logic was reduced
to 6 FO4, the access latency would be 1.8 clock cycles. In both
cases the access latency is rounded to 2 cycles.

By varying the processor pipeline as described above,
we determine how deeply a high-performance design can be
pipelined before overheads, due to latch, clock skew and jitter,
and reduction in IPC, due to increased on-chip structure access
latencies, begin to reduce performance.

4 Pipelined Architectures

In this section, we first vary the pipeline depth of an in-order
issue processor to determine its optimal clock frequency. This
in-order pipeline is similar to the Alpha 21264 pipeline except
that it issues instructions in-order. It has seven stages—fetch,
decode, issue, register read, execute, write back and commit.
The issue stage of the processor is capable of issuing up to four
instructions in each cycle. The execution stage consists of four
integer units and two floating-point units. All functional units
are fully pipelined, so new instructions can be assigned to them
at every clock cycle. We compare our results, from scaling
the in-order issue processor, with the CRAY 1-S machine [9].
Our goal is to determine if either workloads or processor de-
sign technologies have changed the amount of useful logic per
pipeline stage (�logic) that provides the best performance. We
then perform similar experiments to find �logic that will pro-
vide maximum performance for a dynamically scheduled pro-
cessor similar to the Alpha 21264. For our experiments in
Section 4, we make the optimistic assumption that all microar-

Proceedings of the 29th Annual International Symposium on Computer Architecture (ISCA�02)
1063-6897/02 $17.00 © 2002 IEEE

2 4 6 8 10 12 14 16
Useful logic per stage (FO4)

0.0

0.5

1.0

1.5

P
er

fo
rm

an
ce

 (
B

IP
S)

Vector FP
Integer
Non-vector FP

2 4 6 8 10 12 14 16
Useful logic per stage (FO4)

0.0

0.5

1.0

1.5

P
er

fo
rm

an
ce

 (
B

IP
S)

Vector FP
Integer
Non-vector FP

(a) (b)

Figure 4: In-order pipeline performance with and without latch overhead. Figure 4a shows that when there is no latch overhead performance
improves as pipeline depth is increased. When latch and clock overheads are considered, maximum performance is obtained with 6 FO4 useful
logic per stage (�logic), as shown in Figure 4b.

chitectural components can be perfectly pipelined and be par-
titioned into an arbitrary number of stages.

4.1 In-order Issue Processors

Figure 4a shows the harmonic mean of the performance of
SPEC 2000 benchmarks for an in-order pipeline, if there were
no overheads associated with pipelining (�overhead = 0) and
performance was inhibited by only the data and control depen-
dencies in the benchmark. The x-axis in Figure 4a represents
�logic and the y-axis shows performance in billions of instruc-
tions per second (BIPS). Performance was computed as a prod-
uct of IPC and the clock frequency—equal to 1/�logic. The in-
teger benchmarks have a lower overall performance compared
to the vector floating-point (FP) benchmarks. The vector FP
benchmarks are representative of scientific code that operate
on large matrices and have more ILP than the integer bench-
marks. Therefore, even though the execution core has just two
floating-point units, the vector benchmarks out perform the in-
teger benchmarks. The non-vector FP benchmarks represent
scientific workloads of a different nature, such as numerical
analysis and molecular dynamics. They have less ILP than
the vector benchmarks, and consequently their performance
is lower than both the integer and floating-point benchmarks.
For all three sets of benchmarks, doubling the clock frequency
does not double the performance. When �logic is reduced from
8 to 4 FO4, the ideal improvement in performance is 100%.
However, for the integer benchmarks the improvement is only
18%. As �logic is further decreased, the improvement in per-
formance deviates further from the ideal value.

Figure 4b shows performance of the in-order pipeline with
�overhead set to 1.8 FO4. Unlike in Figure 4a, in this graph the
clock frequency is determined by 1/(�logic+�overhead). For
example, at the point in the graph where �logic is equal to 8
FO4, the clock frequency is 1/(10 FO4). Observe that max-
imum performance is obtained when �logic corresponds to 6
FO4. In this experiment, when �logic is reduced from 10 to 6
FO4 the improvement in performance is only about 9% com-
pared to a clock frequency improvement of 50%.

4.2 Comparison with the CRAY-1S

Kunkel and Smith [9] observed for the Cray-1S that maximum
performance can be achieved with 8 gate levels of useful logic
per stage for scalar benchmarks and 4 gate levels for vector
benchmarks. If the Cray-1S were to be designed in CMOS
logic today, the equivalent latency of one logic level would
be about 1.36 FO4, as derived in Appendix A. For the Cray-
1S computer this equivalent would place the optimal �logic at
10.9 FO4 for scalar and 5.4 FO4 for vector benchmarks. The
optimal �logic for vector benchmarks has remained more or
less unchanged, largely because the vector benchmarks have
ample ILP, which is exploited sufficiently well by both the in-
order superscalar pipeline and the Cray-1S. The optimal �logic
for integer benchmarks has more than halved since the time of
the Cray-1S processor, which means that a processor designed
using modern techniques can be clocked at more than twice
the frequency.

One reason for the decrease in the optimal �logic of inte-
ger benchmarks is that in modern pipelines average memory
access latencies are lower, due to on-chip caches. The Alpha
21264 has a two-level cache hierarchy comprising of a 3-cycle,
level-1 data cache and an off-chip unified level-2 cache. In
the Cray-1S all loads and stores directly accessed a 12-cycle
memory. Integer benchmarks have a large number of depen-
dencies, and any instruction dependent on loads would stall
the pipeline for 12 cycles. With performance bottlenecks in
the memory system, increasing clock frequency by pipelining
more deeply does not improve performance. We examined the
effect of scaling a superscalar, in-order pipeline with a mem-
ory system similar to the CRAY-1S (12 cycle access memory
access, no caches) and found that the optimal �logic was 11
FO4 for integer benchmarks.

A second reason for the decrease in optimal �logic is the
change in implementation technology. Kunkel and Smith as-
sumed the processor was implemented using many chips at
relatively small levels of integration, without binning of parts
to reduce manufacturer’s worst case delay variations. Con-
sequently, they assumed overheads due to latches, data, and
clock skew that were as much as 2.5 gate delays [9] (3.4 FO4).

Proceedings of the 29th Annual International Symposium on Computer Architecture (ISCA�02)
1063-6897/02 $17.00 © 2002 IEEE

0 5 10 15
Useful logic per stage (FO4)

0

1

2

3

4

P
er

fo
rm

an
ce

 (
B

IP
S)

Vector FP
Integer
All benchmarks
Non-vector FP

Figure 5: The harmonic mean of the performance of integer and
floating point benchmarks, executing on an out-of-order pipeline, ac-
counting for latch overhead, clock skew and jitter. For integer bench-
marks best performance is obtained with 6 FO4 of useful logic per
stage (�logic). For vector and non-vector floating-point benchmarks
the optimal �logic is 4 FO4 and 5 FO4 respectively.

In contrast, modern VLSI microprocessors are comprised of
circuits residing on the same die, so their process characteris-
tics are more highly correlated than if they were from separate
manufacturing runs fabricated perhaps months apart. Conse-
quently, their speed variations and hence their relative skews
are much smaller than in prior computer systems with lower
levels of integration. Furthermore, the voltages and tempera-
tures on one chip can be computed and taken into account at
design time, also reducing the expected skews. These factors
have reduced modern overhead to 1.8 FO4.

4.3 Dynamically Scheduled Processors

We performed similar experiments using a dynamically sched-
uled processor to find its optimal �logic. The processor config-
uration is similar to the Alpha 21264: 4-wide integer issue and
2-wide floating-point issue. We used a modified version of the
simulator developed by Desikan et al. [3]. Figure 5 shows a
plot of the performance of SPEC 2000 benchmarks when the
pipeline depth of this processor is scaled. The performance
shown in Figure 5 includes overheads represented by latch,
clock skew and jitter (�overhead). Figure 5 shows that over-
all performance of all three sets of benchmarks is significantly
greater than for in-order pipelines. For a dynamically sched-
uled processor the optimal �logic for integer benchmarks is
still 6 FO4. However, for vector and non-vector floating-point
benchmarks the optimal �logic is 4 FO4 and 5 FO4 respec-
tively. The dashed curve plots the harmonic mean of all three
sets of benchmarks and shows the optimal �logic to be 6 FO4.

4.4 Sensitivity of �logic to �overhead

Previous sections assumed that components of �overhead,
such as skew and jitter, would scale with technology and there-
fore overhead would remain constant. In this section, we ex-
amine performance sensitivity to �overhead. Figure 6 shows
a plot of the performance of integer SPEC 2000 benchmarks
against �logic for different values of �overhead. In general, if

0 5 10 15
Clock Period (FO4)

0

1

2

3

B
IP

S

0 FO4
1 FO4
2 FO4
3 FO4
4 FO4
5 FO4
6 FO4

Figure 6: The harmonic mean of the performance of integer bench-
marks, executing on an out-of-order pipeline for various values of
�overhead.

the pipeline depth were held constant (i.e. constant �logic),
reducing the value of �overhead yields better performance.
However, since the overhead is a greater fraction of their clock
period, deeper pipelines benefit more from reducing �overhead
than do shallow pipelines.

Interestingly, the optimal value of �logic is fairly insensi-
tive to �overhead. In section 2 we estimated �overhead to be
1.8 FO4. Figure 6 shows that for �overhead values between 1
and 5 FO4 maximum performance is still obtained at a �logic
of 6 FO4.

4.5 Sensitivity of �logic to Structure Capacity

In previous sections we found the optimal �logic by varying
the pipeline depth of a superscalar processor with structure ca-
pacities configured to match those of the Alpha 21264. How-
ever, at future clock frequencies the Alpha 21264 structure ca-
pacities may not yield maximum performance. For example,
the data cache in the Alpha 21264 processor is 64KB and has a
3-cycle access latency. When the processor pipeline is scaled
to higher frequencies, the cache access latency (in cycles) will
increase and may unduly limit performance. In such a situ-
ation, a smaller capacity cache with a correspondingly lower
access latency could provide better performance.

The capacity and latency of on-chip microarchitectural
structures have a great influence on processor performance.
These structure parameters are not independent and are closely
tied together by technology and clock frequency. To iden-
tify the best capacity and corresponding latency for various
on-chip structures, at each of our projected clock frequencies,
we determined the sensitivity of IPC to the size and delay of
each individual structure. We performed experiments indepen-
dent of technology and clock frequency by varying the latency
of each structure individually, while keeping its capacity un-
changed. We measured how IPC changed with different la-
tencies for each structure. We performed similar experiments
to find the sensitivity of IPC to the capacity of each structure.
We then used these two IPC sensitivity curves to determine, at
each clock frequency, the capacity (and therefore latency) of
every structure that will provide maximum performance. With
that “best” configuration we simulated structures that were

Proceedings of the 29th Annual International Symposium on Computer Architecture (ISCA�02)
1063-6897/02 $17.00 © 2002 IEEE

0 5 10 15
Useful logic per stage(FO4)

0

1

2

3

B
IP

S

Optimized Structures
Alpha 21264

Figure 7: The harmonic mean of the performance of all SPEC
2000 benchmarks when optimal on-chip microarchitectural structure
capacities are selected.

slightly larger/slower and smaller/faster to verify that the con-
figuration was indeed optimal for that clock rate. At a clock
with �logic of 6 FO4, the major on-chip structures have the
following configuration: a level-1 data cache of 64KB, and 6
cycle access latency; a level-2 cache with 512KB, and 12 cycle
access latency and a 64 entry instruction window with a 3 cy-
cle latency. We assumed all on-chip structures were pipelined.

Figure 7 shows the performance of a pipeline with opti-
mally configured microarchitectural structures plotting perfor-
mance against �logic. This graph shows the harmonic mean of
the performance (accounting for �overhead) of all the SPEC
2000 benchmarks. The solid curve is the performance of a
Alpha 21264 pipeline when the best size and latency is cho-
sen for each structure at each clock speed. The dashed curve
in the graph is the performance of the Alpha 21264 pipeline,
similar to Figure 5. When structure capacities are optimized at
each clock frequency, on the average, performance increases
by approximately 14%. However, maximum performance is
still obtained when �logic is 6 FO4.

4.6 Effect of Pipelining on IPC

Thus far we have examined scaling of the entire processor
pipeline. In general, increasing overall pipeline depth of a
processor decreases IPC because of dependencies within crit-
ical loops in the pipeline [2] [13]. These critical loops include
issuing an instruction and waking its dependent instructions
(issue-wake up), issuing a load instruction and obtaining the
correct value (DL1 access time), and predicting a branch and
resolving the correct execution path. For high performance
it is important that these loops execute in the fewest cycles
possible. When the processor pipeline depth is increased, the
lengths of these critical loops are also increased, causing a de-
crease in IPC. In this section we quantify the performance ef-
fects of each of the above critical loops and in Section 5 we
propose a technique to design the instruction window so that
in most cases the issue-delay loop is 1 cycle.

To examine the impact of the length of critical loops on
IPC, we scaled the length of each loop independently, keep-
ing the access latencies of other structures to be the same as
those of the Alpha 21264. Figure 8 shows the IPC sensitivity

0 5 10 15
Number of cycles over Alpha 21264 loop

0.0

0.5

1.0

R
el

at
iv

e
IP

C

load-use
branch mis-pred
issue-wakeup

Figure 8: IPC sensitivity to critical loops in the data path. The
x-axis of this graph shows the number of cycles the loop was extended
over its length in the Alpha 21264 pipeline. The y-axis shows relative
IPC.

of the integer benchmarks to the branch misprediction penalty,
the DL1 access time (load-use) and the issue-wake up loop.
The x-axis of this graph shows the number of cycles the loop
was extended over its length in the Alpha 21264 pipeline. The
y-axis shows IPC relative to the baseline Alpha 21264 proces-
sor. IPC is most sensitive to the issue-wake up loop, followed
by the load-use and branch misprediction penalty. The issue-
wake up loop is most sensitive because it affects every instruc-
tion that is dependent on another instruction for its input val-
ues. The branch misprediction penalty is the least sensitive
of the three critical loops because modern branch predictors
have reasonably high accuracies and the misprediction penalty
is paid infrequently. The floating-point benchmarks showed
similar trends with regard to their sensitivity to critical loops.
However, overall they were less sensitive to all three loops than
integer benchmarks.

The results from Figure 8 show that the ability to exe-
cute dependent instructions back to back is essential to per-
formance. Similar obsevations have been made in other stud-
ies [13] [1].

5 A Segmented Instruction Window Design

In modern superscalar pipelines, the instruction issue win-
dow is a critical component, and a naive pipelining strategy
that prevents dependent instructions from being issued back
to back would unduly limit performance. In this section we
propose a method to pipeline the instruction issue window to
enable clocking it at high frequencies.

To issue new instructions every cycle, the instructions in
the instruction issue window are examined to determine which
ones can be issued (wake up). The instruction selection logic
then decides which of the woken instructions can be selected
for issue. Stark et al. showed that pipelining the instruction
window, but sacrificing the ability to execute dependent in-
structions in consecutive cycles, can degrade performance by
up to 27% compared to an ideal machine [13].

Figure 9 shows a high-level representation of an instruction
window. Every cycle that a result is produced, the tag associ-
ated with the result (destination tag) is broadcast to all entries

Proceedings of the 29th Annual International Symposium on Computer Architecture (ISCA�02)
1063-6897/02 $17.00 © 2002 IEEE

=

=

=
OR=

rdyL opd tagL opd tagR rdyR

rdyRopd tagRopd tagL

OR

rdyL

tagN tag1

Figure 9: A high-level representation of the instruction window.

in the instruction window. Each instruction entry in the win-
dow compares the destination tag with the tags of its source
operands (source tags). If the tags match, the corresponding
source operand for the matching instruction entry is marked
as ready. A separate logic block (not shown in the figure) se-
lects instructions to issue from the pool of ready instructions.
At every cycle, instructions in any location in the window can
be woken up and selected for issue. In the following cycle,
empty slots in the window, from instructions issued in the pre-
vious cycle, are reclaimed and up to four new instructions can
be written into the window. In this section, we first describe
and evaluate a method to pipeline instruction wake-up and then
evaluate a technique to pipeline instruction selection logic.

5.1 Pipelining Instruction Wakeup

Palacharla et al. [11] argued that three components constitute
the delay to wake up instructions: the delay to broadcast the
tags, the delay to perform tag comparisons, and the delay to
OR the individual match lines to produce the ready signal.
Their studies show that the delay to broadcast the tags will be
a significant component of the overall delay at feature sizes of
180nm and below. To reduce the tag broadcast latency, we pro-
pose organizing the instruction window into stages, as shown
in Figure 10. Each stage consists of a fixed number of instruc-
tion entries and consecutive stages are separated by latches. A
set of destination tags are broadcast to only one stage during a
cycle. The latches between stages hold these tags so that they
can be broadcast to the next stage in the following cycle. For
example, if an issue window capable of holding 32 instructions
is divided into two stages of 16 entries each, a set of tags are
broadcast to the first stage in the first cycle. In the second cy-
cle the same set of tags are broadcast to the next stage, while
a new set of tags are broadcast to the first 16 entries. At every
cycle, the entire instruction window can potentially be woken
up by a different set of destination tags at each stage. Since
each tag is broadcast across only a small part of the window
every cycle, this instruction window can be clocked at high fre-
quencies. However, the tags of results produced in a cycle can
wake up instructions only in the first stage of the window dur-
ing that cycle. Therefore, dependent instructions can be issued

OR=

=

=
=

T
ag

 p
ip

el
in

e

tagN tag1

Latch

OR

rdyL opd tagL opd tagR rdyR

rdyRopd tagRrdyL

Latch

rdyL opd tagL opd tagR rdyR

opd tagL

Figure 10: A segmented instruction window wherein the tags are
broadcast to one stage of the instruction window at a time. We also
assume that instructions can be selected from the entire window.

back to back only if they are in the first stage of the window.
We evaluated the effect of pipelining the instruction win-

dow on IPC by varying the pipeline depth of a 32-entry instruc-
tion window from 1 to 10 stages. Figure 11 shows the results
from our experiments when the number of stages of the win-
dow is varied from 1 to 10. Note that the x-axis on this graph
is the pipeline depth of the wake-up logic. The plot shows that
IPC of integer and vector benchmarks remain unchanged until
the window is pipelined to a depth of 4 stages. The overall
decrease in IPC of the integer benchmarks when the pipeline
depth of the window is increased from 1 to 10 stages is approx-
imately 11%. The floating-point benchmarks show a decrease
of 5% for the same increase in pipeline depth. Note that this
decrease is small compared to that of naive pipelining, which
prevents dependent instructions from issuing consecutively.

5.2 Pipelining Instruction Select

In addition to wake-up logic, the selection logic determines
the latency of the instruction issue pipeline stage. In a con-
ventional processor, the select logic examines the entire in-
struction window to select instructions for issue. We propose
to decrease the latency of the selection logic by reducing its
fan-in. As with the instruction wake-up, the instruction win-
dow is partitioned into stages as shown in Figure 12. The se-
lection logic is partitioned into two operations: preselection
and selection. A preselection logic block is associated with
all stages of the instruction window (S2-S4) except the first
one. Each of these logic blocks examines all instructions in
its stage and picks one or more instructions to be considered
for selection. A selection logic block (S1) selects instructions
for issue from among all ready instructions in the first section

Proceedings of the 29th Annual International Symposium on Computer Architecture (ISCA�02)
1063-6897/02 $17.00 © 2002 IEEE

0 2 4 6 8 10
Instruction window pipeline depth

0.0

0.5

1.0

R
el

at
iv

e
IP

C vector FP
Integer
Non-vector FP

Figure 11: IPC sensitivity to instruction window pipeline depth,
assuming all entries in the window can be considered for selection.

and the instructions selected by S2-S4. Each logic block in
this partitioned selection scheme examines fewer instructions
compared to the selection logic in conventional processors and
can therefore operate with a lower latency.

Although several configurations of instruction window and
selection logic are possible depending on the instruction win-
dow capacity, pipeline depth, and selection fan-in, in this study
we evaluate the specific implementation shown in Figure 12.
This instruction window consists of 32-entries partitioned into
four stages and is configured so that the fan-in of S1 is 16.
Since each stage in the window contains 8 instructions and all
the instructions in Stage 1 are considered for selection by S1,
up to 8 instructions may be pre-selected. Older instructions
in the instruction window are considered to be more critical
than younger ones. Therefore the preselection blocks are or-
ganized so that the stages that contain the older instructions
have a greater share of the pre-selected instructions. The logic
blocks S2, S3, and S4 pre-select instructions from the second,
third, and fourth stage of the window respectively. Each se-
lect logic block can select from any instruction within its stage
that is ready. However, S2 can pre-select a maximum of five
instructions, S3 a maximum of 2 and S4 can pre-select only
one instruction. The selection process works in the following
manner. At every clock cycle, preselection logic blocks S2-S4
pick from ready instructions in their stage. The instructions
pre-selected by these blocks are stored in latches L1-L7 at the
end of the cycle. In the second cycle the select logic block S1
selects 4 instructions from among all the ready instructions in
Stage 1 and those in L1-L7 to be issued to functional units.

With an instruction window and selection logic as de-
scribed above, the IPC of integer benchmarks was reduced
by only 4% compared to a processor with a single cycle, 32-
entry, non-pipelined instruction window and select fan-in of
32. The IPC of floating-point benchmarks was reduced by only
1%. The rather small impact of pipelining the instruction win-
dow on IPC is not surprising. The floating-point benchmarks
have fewer dependences in their instruction streams than in-
teger codes, and therefore remain unaffected by the increased
wake up penalties. For the integer benchmarks, most of the
dependent instructions are fairly close to the instructions that
produce their source values. Also, the instruction window ad-
justs its contents at the beginning of every cycle so that the

L
5−

L
6

L
7

L
0−

L
4

S4

S3

S2

Stage 4

Stage 3

Stage 2

Stage 1
8 Instructions

2 Instructions

5 Instructions

Tag Latch Tag Latch

Tag LatchTag Latch

Tag Latch Tag Latch

Destination Tags

New Instructions

Selected Instructions

4

S1

1 Instruction

Figure 12: A 32-entry instruction window partitioned into four
stages with a selection logic fan-in of 16 instructions

older instructions collect to one end of the window. This fea-
ture causes dependent instructions to eventually collect at the
“bottom” of the window and thus enables them to be woken
up with less delay. This segmented window design will be
capable of operating at greater frequencies than conventional
designs at the cost of minimal degradation in IPC.

6 Related Work

Aside from the work of Kunkel and Smith [9] discussed in
Section 4, the most relevant related work explores alternate
designs for improving instruction window latencies. Stark et
al. [13] proposed a technique to pipeline instruction wake up
and select logic. In their technique, instructions are woken up
“speculatively” when their grandparents are issued. The ra-
tionale behind this technique is that if an instruction’s grand-
parents’ tags are broadcast during the current cycle its parents
will probably be issued the same cycle. While speculatively
woken instructions can be selected, they cannot be issued until
their parents have been issued. Although this technique re-
duces the IPC of the processor compared to a conventional
1-cycle instruction window, it enables the instruction window
to function at a higher clock frequency.

Brown et al. [1] proposed a method to move selection logic
off the critical path. In this method, wake-up and select are
partitioned into two separate stages. In the first stage (wake-
up) instructions in the window are woken up by producer tags,
similar to a regular instruction window. All instructions that
wake up speculate they will be selected for issue in the fol-
lowing cycle and assert their “available” signals. In the next
cycle, the result tags of these instructions are broadcast to the
window, as though all of them have been issued. However, the
selection logic selects only a limited number of instructions
from those that asserted their “available” signal. Instructions
that do not get selected (collision victims) and any dependents
that are woken up before they can be issued (pileup victims) are

Proceedings of the 29th Annual International Symposium on Computer Architecture (ISCA�02)
1063-6897/02 $17.00 © 2002 IEEE

detected and re-scheduled. The authors show that this tech-
nique has an IPC within 3% of a machine with single-cycle
scheduling logic.

7 Conclusion

In this paper, we measured the effects of varying clock fre-
quency on the performance of a superscalar pipeline. We de-
termined the amount of useful logic per stage (�logic) that
will provide the best performance is approximately 6 FO4 in-
verter delays for integer benchmarks. If �logic is reduced be-
low 6 FO4 the improvement in clock frequency cannot com-
pensate for the decrease in IPC. Conversely, if �logic is in-
creased to more than 6 FO4 the improvement in IPC is not
enough to counteract the loss in performance resulting from a
lower clock frequency. For vector floating-point benchmarks
the optimal �logic was at 4 FO4. The clock period (�logic +
�overhead) at the optimal point is 7.8 FO4 for integer bench-
marks, corresponding to a frequency of 3.6GHz at 100nm
technology. For vector floating-point benchmarks the opti-
mal clock period is 5.8 FO4 which corresponds to 4.8GHz at
100nm technology.

These optimal clock frequencies can be achieved only if
on-chip microarchitectural structures can be pipelined to op-
erate at high frequencies. We identified the instruction issue
window as a critical structure, which will be difficult to scale
to those frequencies. We propose a segmented instruction win-
dow design that will allow it to be pipelined to four stages
without significant decrease in IPC. Scaling the pipeline depth
of the window to 10 stages only decreases the IPC of SPEC
2000 integer benchmarks by 11% and floating-point bench-
marks by 5%.

Although this study uses the parameters of a 100nm tech-
nology, our use of the technology-independent FO4 metric will
permit our results to be translated to other technologies. We
assume that 1 FO4 corresponds to 360 picoseconds times the
transistor’s drawn gate length. But, for highly tuned processes,
such as the Intel 0.13-�m process, the drawn gate length and
effective gate length may differ substantially [16]. However,
our estimate of the optimal pipeline depth remains unchanged
regardless of the exact value assigned to a FO4 delay though
the actual cycle time will depend on the operating conditions
and process technology specifications.

While we did not consider the effects of slower wires, they
should not affect this study, which uses a fixed microarchi-
tecture. To first order, wire delays remain constant as a fixed
design is scaled to smaller feature sizes [15]. Although wire
resistance increases, wire lengths decrease, thus preserving the
absolute wire delay across technologies. However, long wires
that arise as design complexity increases can have a substantial
impact on the pipelining of the microarchitecture. For exam-
ple, the high clock rate target of the Intel Pentium IV forced
the designers to dedicate two pipeline stages just for data trans-
portation [5]. We will examine the effects of wire delays on
our pipeline models and optimal clock rate selection in future
work.

Microprocessor performance has improved at about 55%
per year for the last three decades, with much of the gains
resulting from higher clock frequencies, due to process tech-

nology and deeper pipelines. However, our results show that
pipelining can contribute at most another factor of two to
clock rate improvements. Subsequently, in the best case, clock
rates will increase at the rate of feature size scaling, which
is projected to be 12-20% per year. Any additional perfor-
mance improvements must come from increases in concur-
rency, whether they be instruction-level parallelism, thread-
level parallelism, or a combination of the two. If the goal is
to maintain historical performance growth rates, concurrency
must start increasing at 33% per year and sustain a total of 50
IPC within the next 15 years. While this goal presents tremen-
dous challenges, particularly in the face of increasing on-chip
communication delays, rich opportunities for novel architec-
tures lie ahead.

Acknowledgments

We thank the anonymous referees for their comments and
suggestions. Thanks also to Mary Brown and members of
the CART research group for their valuable suggestions. This
research is supported by the Defense Advanced Research
Projects Agency under contract F33615-01-C-1892, NSF CA-
REER grants CCR-9985109 and CCR-9984336, two IBM
University Partnership awards, and a grant from the Intel Re-
search Council.

References

[1] Mary D Brown, Jared Stark, and Yale N. Patt. Select-free in-
struction scheduling logic. In Proceedings of the 34rd Inter-
national Symposium on Microarchitecture, pages 204–213, De-
cember 2001.

[2] Anantha Chandrakasan, William J. Bowhill, and Frank Fox ,ed-
itors. Design of High-Performance Microprocessor Circuits.
IEEE Press, Piscataway, NJ, 2001.

[3] Rajagopalan Desikan, Doug Burger, and Stephen W. Keckler.
Measuring experimental error in microprocessor simulation. In
Proceedings of the 28th Annual International Symposium on
Computer Architecture, pages 266–277, July 2001.

[4] Seongmoo Heo, Ronny Krashinsky, and Krste Asanović.
Activity-sensitive flip-flop and latch selection for reduced en-
ergy. In Conference on Advanced Research in VLSI, pages 59–
74, March 2001.

[5] Glenn Hinton, Dave Sager, Mike Upton, Darrell Boggs, Doug
Carmean, Alan Kyker, and Patrice Roussel. The microarchitec-
ture of the pentium 4 processor. Intel Technology Journal, 1,
February 2001.

[6] Ron Ho, Kenneth W. Mai, and Mark A. Horowitz. The future of
wires. Proceedings of the IEEE, 89(4):490–504, April 2001.

[7] Norman P. Jouppi and Steven J. E. Wilton. An enhanced access
and cycle time model for on-chip caches. Technical Report 93.5,
Compaq Computer Corporation, July 1994.

[8] James S. Kolodzey. Cray-1 computer technology. IEEE Transac-
tions on Components, Hybrids, and Manufacturing Technology
CHMT-4(2), 4(2):181–187, March 1981.

[9] Steven R. Kunkel and James E. Smith. Optimal pipelining in
supercomputers. In Proceedings of the 13th Annual Interna-
tional Symposium on Computer Architecture, pages 404–411,
June 1986.

Proceedings of the 29th Annual International Symposium on Computer Architecture (ISCA�02)
1063-6897/02 $17.00 © 2002 IEEE

[10] Nasser A. Kurd, Javed S. Barkatullah, Rommel O. Dizon,
Thomas D. Fletcher, and Paul D. Madland. Multi-GHz clock-
ing scheme for Intel Pentium 4 microprocessor. In Proceedings
of the International Solid-state Circuits Conference, pages 404–
405, February 2001.

[11] Subbarao Palacharla, Norman P. Jouppi, and J.E. Smith.
Complexity-effective superscalar processors. In Proceedings of
the 24th Annual International Symposium on Computer Archi-
tecture, pages 206–218, June 1997.

[12] Premkishore Shivakumar and Norman P. Jouppi. Cacti 3.0: An
integrated cache timing, power and area model. Technical Re-
port 2001/2, Compaq Computer Corporation, August 2001.

[13] Jared Stark, Mary D. Brown, and Yale N. Patt. On pipelining
dynamic instruction scheduling logic. In Proceedings of the
33rd International Symposium on Microarchitecture, pages 57–
66, December 2000.

[14] Vladimir Stojanović and Vojin G. Oklobdžija. Compara-
tive analysis of master-slave latches and flip-flops for high-
performance and low-power systems. IEEE Journal of Solid-
state Circuits, 34(4):536–548, April 1999.

[15] Dennis Sylvester and Kurt Keutzer. Rethinking deep-submicron
circuit design. IEEE Computer, 32(11):25–33, November 1999.

[16] S. Tyagi, M. Alavi, R. Bigwood, T. Bramblett, J. Brandenburg,
W. Chen, B. Crew, M. Hussein, P. Jacob, C. Kenyon, C. Lo,
B. Mcintyre, Z. Ma, P. Moon, P. Nguyen, L. Rumaner, R. Schwe-
infurth, S. Sivakumar, M. Stettler, S. Thompson, B. Tufts, J. Xu,
S. Yang, and M. Bohr. A 130nm generation logic technology
featuring 70nm transistors, dual vt transistors and 6 layers of cu
interconnects. In Proceedings of International Electronic De-
vices Meeting, December 2000.

A ECL gate equivalent in FO4

The Cray-1S processor was designed in an ECL technology,
using four and five input NAND gates [8] with eight gate levels
at every pipeline stage. Because of its implementation from
discrete ECL devices and the design of transmission lines for
the wires connecting the chips, the latency of one wire and one
gate delay were roughly equivalent. Furthermore, because of
the transmission line effect of the wires, additional gate fanout
loading can largely be ignored. The result is that the latency
of a pipeline stage was approximately equal to the delay of
16 logic gates. Our CMOS equivalent of one Cray ECL gate
circuit consists of a 4-input NAND driving a 5-input NAND,
where the first accounts for gate delay and the second accounts
for the wire delay. Figure 13 shows the test circuit we used to
perform this measurement. SPICE simulations show that this
one ECL gate equivalent has a latency equal to 1.36 FO4.

Vdd

Output

Input

Load

GndVdd

Figure 13: Circuit to measure the delay of CRAY-1S gates in terms
of FO4.

Proceedings of the 29th Annual International Symposium on Computer Architecture (ISCA�02)
1063-6897/02 $17.00 © 2002 IEEE

	Index:
	CCC: 0-7803-5957-7/00/$10.00 © 2000 IEEE
	ccc: 0-7803-5957-7/00/$10.00 © 2000 IEEE
	cce: 0-7803-5957-7/00/$10.00 © 2000 IEEE
	index:
	INDEX:
	ind:
	Intentional blank: This page is intentionally blank

